

Update on CBS related work

Use case series entries
Infrastructure for this use case and beyond

Using this infrastructure for knowledge work
«Walking for CBS»

Update to CBS 8.2.28
and csfmr_manager in July

Minor adaptions to MR clustering

Improve FRBR clustering
Work for SLSP

Goal: Display only one entry on result list of

swissbib.ch for a cluster
Clustering on expression level of FRBR

Elements to check: title, authors, IDs, series title
and number, coordinates, scale, language

Testset of 1190 records with various materials,
manually clustered

Script to assess the quality of clustering

swissbib takes care of mass corrections and
deduplication for SLSP

Up to now: mass corrections

Until spring 2020: deduplication
End of 2020: Go Live

IDS uses only 490 (with control number in $w)
RERO uses 490 and 800/830

SLSP wants to use 490 and 800/810/811 /830
to be fully compliant with MARC21

swissbib has to generate these fields after

merging of the records (only one per series
record!)

If the series record has a field 100/110/111:
generate field 800/810/811

Otherwise: generate field 830

To generate the fields 8xx use content from the
existing series entry and from the series record

Keep one 8xx per series record

CBS:

e write all fields 490, 800 and 830 with a $w in
a temporary field 839

* Remove identical fields without $w during
merging

* Export as MARC XML

“Developing infrastructure for knowledge work”

If we look at the series entries use case (as one example):

What could be the role of swissbib in the context
of knowledge work and what do we need to be
able to fulfil this role?

1) Metadata for inventory management versus metadata for knowledge work, which
needs more context. (content for SLSP, linked.swissbib)

2) Trends in the role of libraries: helping users to find the right content as open access
leads to potential explosion of content availability versus libraries being actively
engaged in knowledge work, supporting content creation and maybe even publishing in
an open access world. (various discovery services, automatic content creation/enrichment)

3) Traditional understanding of library collections versus the full scholarly record, i.e.
extending the content of interest beyond just research output to e.g. research data and
non-peer reviewed publications. (swissbib isn’t very traditional, we are more thinking into
the direction of the second part)

4) Metadata in the duality of just identifying and disambiguating versus describing in
detail (rich metadata). (only automatically done)

10

data workflows have to be simple (decoupled Microservices)

agile and fast development (modern devops, containerization,
orchestration)

“DataWork” for “KnowledgeWork”: clustering, enrichment, transformation
for very diverse services, all kind of data (structured / unstructured /
sparse / rich / archives / educational platforms / audio-video material)

Enable (specialized) users to work with (meta-) data directly (without
intermediate discovery software)

Combination of traditional and proven library software (CBS) with new
software trends

11

Swiss Meta Data Platform!

data processing; Service Layer(uses data sinks |
of data processing) .

Data Storage (NoSQL)

A |

Streaming / Batch |
data-processing new “data analysis"
(Apache Flink / Spark) services e.g. —0
——_— > ;Event Hub" ! Apache Zeppelin

pache Kafka <<open and free
content . endpoints / APls

for humans

U ! new services (not ' and external

defined by now) Services>>

agile creation !

<<({transaction data) coming from Service Layer / will be combined with Meta Data>> !

Explanation _ concept or prototype available

12

data ingestion

processing, linking and analytics of data *

Producers

Consumers /
Producers

A%
DBpedia

WIKIDATA

clustering, linking, aggregation, transformation, enrichment

Kafka
Streams

A
%3 Flink

3 beam
FMBtof6Eturd

&

Consumers /
Producers

&

Consumers [
Producers

VIAF

lobid

data based services

|

munze

Search - Graph - content repository / admlnlstatlon'

Solr® |

) .
%@ elastic

Z jupyter

vuFind,_

Searrh Drsiawen Sheae

Jplay

What is Apache Flink? (a few words)

A distributed stream processor with expressive APls to implement stateful
stream processing applications (unification of batch and streaming is actually
the main goal)

originally developed at Universities around Berlin (http://stratosphere.eu)

Further development under Apache by startup “data artisans”, January 2019
bought by Alibaba for 100 Million Euros (now https://www.ververica.com

Data pipes (Batch and Streaming), data analytics, event processing, libraries
for Machine Learning, strong integration with Apache Beam

a lot of documentation and presentations are available
(e.g. https://www.flink-forward.org/), very helpful community

14

/*
Step 1: Parse MARC-XML records (17 millions for SLSP)
¥/
val env = ExecutionEnvironment.getExecutionEnvironment
env.getConfig.setGlobalJobParameters(pt)
val xmlRecords = env.readTextFile(inputFilePath.get)
.filter(isRecord)
.map(parseRecord)

/*
Step 2: Use MARC-XML records to build intermediary series and volume records; join records with matching local
system numbers
*/
val volumes = xmlRecords.filter(isVolumeRecord)
flatMap(createStrippedVolumeRecords)
val series = xmlRecords.flatMap(createSeriesRecords)
val volumesSeriesJoin = volumes.join(series, JoinHint.REPARTITION HASH FIRST)
.where(firstLeftField= "seriesId")
.equalTo(firstRightField= "localRecId")

https: //gitlab.com/swissbib /slsp /series-transformation /volumes-series-enrichment-flink

15

/*

Step 3: Group by volume's recId, filter out duplicate content (records stemming from the same series) and
discard all unneeded XML content (ie. content not going to field 800, 810, 811 or 830)

*f

val fields8xx = volumesSeriesJoin
.groupBy(. 1.recId)
.combineGroup { (recs: Iterator[(VolumeRecord, SeriesRecord)], out: Collector[KeyedField]) =>
combine8xxFields(recs, out)

}

/:k
Step 4: Clean new volumes stream of redundant 7xx fields
'

val localKeyRecKeyMap = series.map(s => LocalKeyRecKeyEntry(s.localRecId, s.recld))
val fields7xxWithSeriesRecIds = xmlRecords.flatMap(extract7xxFields)
.join(localKeyRecKeyMap, JoinHint.BROADCAST HASH SECOND)
.where(firstLeftField= "seriesId")
.equalTo(firstRightField= "localRecId")
.map(j => Field7xx(j. 1l.fieldTag, j. 1l.recld, j. 2.recIld, j. 1.fieldContent))
val fields/xx = fields7xxWithSeriesRecIds
.groupBy(.recId)
.combineGroup {
(fields: Iterator[Field7xx], out: Collector[KeyedField]) => combine7xxFields(fields, out)
}

16

/*
Step 5: Join, possibly reduce and merge the 7xx and 8xx fields with original volume stream
4

val recordsWith8xxFields = xmlRecords
.map(remove839Fields)
.leftOuterJoin(fields8xx, JoinHint.BROADCAST HASH SECOND)
.where(getField00@l1lContent)
.equalTo(_.recId)
.apply(applyMerge(,) (mergeField8xx))

val finalRecords = recordsWith8xxFields
.leftOuterJoin(fields7xx, JoinHint.BROADCAST HASH SECOND)
.where(getField00@1lContent)
.equalTo(_.recId)
.apply(applyMerge(,) (mergeField7xx))

/*
Step 6: Write records to file(s)
L'
finalRecords.map(serializeRecord)
.map(s => s.replaceAll(regex= "ind2=\"([*\"1+)\" indl=\"(["*\"]1+)\" tag=\"([~\"1+)\"",
replacement = ['tag=\"$3\" ind1=\"$2\" ind2=\"$1\""))
.output(fileSink)

env.execute(jobName = "Volumes Series Enrichment")

17

Overview Timeline Exceptions Configuration
Filter -> FlatMap
Filter (Fiter at org.swisshib
Pl .
SswissbibSsispSJobsi(Job.scala
Data Source -> Filter -> Map :75))

Datasource (at org swissbib.si
(Job.scala 65

) (org.apache.fink api java.l
o Texsnput-omna))

$1(Job.scala'67))

Subtasks

>

Map at . -swissbib.slsp.Jobs.

Isp$Jobs1{Job.scala:76))

Paratetom

FlatMap
Flamap (FlatMap at org.swissb
ib.sisp.Jobs.

Join -> Map
Join (Join at org.swissbib.sls

(Job.scala 80)

p-Jobs.

->mp(xf,y=m

rgSswissbibSsispSJobs1{Job.sca
1a:77))

Operatoe: Fistusp

Hash Partition on

Sort

nease]

GroupReduce -> Map -> Map
GroupReduce (GroupReduce at o
(Job.scala-03))

-> Map
(Map at org swrssbib.sisp Job.

1(Job scala9s))
>-> Map (Key Extractor)

Task Metrics

[Aggregate task statistics by TaskManager

Start Time

2018-07-23, 2019-07-23,

10.Acna 1n.an.ce

End Time

Hash Partiion o0 [

Quter Join -> Map

Quter Join -> Map -> Map

Data Si

DataSink (org swi
lesink@434

Join -> Map -> Map
Formart a_};\. :‘JEM. GroupReduce -> Map -> Map
rjonDataset scala:278)) m,.s(p M' $:,,w
bv,:,;_,'f"? \pin “9"":# Gobscala:114))
a110)) o Hash Parooon on Map a1 org.Swissbid.slsp o Hash Partition o0 [
"W"‘*}!E' —— bslspSiobS1{Job.scala: 117))i/> -> Map (Key Extractor)
Map Cperan ‘, axe
Map (Map at org swissbib sisp.
bib$sisp8Jobs1 (Job. scala:104)) .
Watermarks Accumulators Checkpoints
Bytes Records Bytes Records
Duration Name received received sent sent
1h 14m CHAIN DataSource (at org.swissbib.slsp.Job$.delayedEndpoint$org$swissbib$sispJob1(Job.scala:65) 0B 0 233 17,774,917 9

lnen nnnaha finl: ani ins in Tautlnn #FCarmatl o Filbar Milbar e

~n

Parallelism Tasks

Status

-

@ viaf-ntriples-ordering
3e9bd1bab9ea93d48i{39fc711e51196

2019-08-07, 12:29:23 - 2019-08-07, 17:22:40 4h53m CIHECEEERE

Overview Timeline Exceptions Configuration

Data Source -> Filter -> Filter -> Filter -> Map -> Reduce

DataSource (at org.swissbib_Jo
bS.main(Job.scala:42) (org.apa
che.flink.api.java.io. Textinpu

->Fi
ter (Filter at org.swissbib.J
‘obs.main(Job.scala:46))

> Filter T al org.swi
ﬁbb.mmlo:&a:ﬂﬂ)

-> Map (Map at org.sw
issbib.Job$.main{Job.scala:50)

> qmgle) Redu\;'e;(:nb
1 org.swissbil .main(Job.s
2 cala:52)) Reduce -> Map
3 Reduce (Reduce at org.swissbib
.JobS.main(Job.scala’52))
> at org.swissbi
B 2on i staa 59

Hagh Parstion on ol
‘Sort on [1:ASC

https: //gitlab.com/swissbib /linked /viaf-grouped-ntriples

Forward

Data Sink
DataSink (org.swissbib. KafkaSi
nl%%aerzdes) !

19

https:

-
Jjupyter
V’

X % X

.

Beam Model: Pipeline Construction

Beam Model: Fn Runners

Execution Execution

opensource.com/article/18/5 /apache-beam

The vision of Apache Beam in a nutshell:
(by now not runnning — we are working on it)

- language portability

people (researchers, students, librarians)

can build data tasks on a high level with various
languages (preferably Python) using the beam
model

- engine portability
these data tasks can be executed on different
runnners (in our case Apache Flink)

possible example use case:
Natural language processing based on PubMed and Mesh

https: //www.youtube.com/watch?v=7GwXJJApPtg&list=PL4dEBWmGSIU jJ82n0OWK46bagly4TheglQ&index=31

20

Ginter Hipler
Systems Architect
swissbib

Universitatsbibliothek Basel

guenter.hipler@unibas.ch

Silvia Witzig
Metadata Specialist

swissbib

Universitatbibliothek Basel

silvia.witzig(@unibas.ch

23

GitHub
https: //github.com /swissbib

https: //gitlab.com /swissbib-unibas
https: / /github.com /linked-swissbib
https: / /gitlab.com /swissbib

Blog / Twitter

https: //swissbib.blogspot.com
https: / /twitter.com /swissbib

People behind swissbib
https: //swissbib.blogspot.com /2019 /01 /die-personen-hinter-swissbib-

les.html (only german and french)

24

